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New to this Edition

Preface

Thomas’ Calculus: Early Transcendentals, Thirteenth Edition, provides a modern intro-
duction to calculus that focuses on conceptual understanding in developing the essential
elements of a traditional course. This material supports a three-semester or four-quarter
calculus sequence typically taken by students in mathematics, engineering, and the natural
sciences. Precise explanations, thoughtfully chosen examples, superior figures, and time-
tested exercise sets are the foundation of this text. We continue to improve this text in
keeping with shifts in both the preparation and the ambitions of today’s students, and the
applications of calculus to a changing world.

Many of today’s students have been exposed to the terminology and computational
methods of calculus in high school. Despite this familiarity, their acquired algebra and
trigonometry skills sometimes limit their ability to master calculus at the college level. In
this text, we seek to balance students’ prior experience in calculus with the algebraic skill
development they may still need, without slowing their progress through calculus itself. We
have taken care to provide enough review material (in the text and appendices), detailed
solutions, and variety of examples and exercises, to support a complete understanding of
calculus for students at varying levels. We present the material in a way to encourage stu-
dent thinking, going beyond memorizing formulas and routine procedures, and we show
students how to generalize key concepts once they are introduced. References are made
throughout which tie a new concept to a related one that was studied earlier, or to a gen-
eralization they will see later on. After studying calculus from Thomas, students will have
developed problem solving and reasoning abilities that will serve them well in many im-
portant aspects of their lives. Mastering this beautiful and creative subject, with its many
practical applications across so many fields of endeavor, is its own reward. But the real gift
of studying calculus is acquiring the ability to think logically and factually, and learning
how to generalize conceptually. We intend this book to encourage and support those goals.

In this new edition we further blend conceptual thinking with the overall logic and struc-
ture of single and multivariable calculus. We continue to improve clarity and precision,
taking into account helpful suggestions from readers and users of our previous texts. While
keeping a careful eye on length, we have created additional examples throughout the text.
Numerous new exercises have been added at all levels of difficulty, but the focus in this
revision has been on the mid-level exercises. A number of figures have been reworked and
new ones added to improve visualization. We have written a new section on probability,
which provides an important application of integration to the life sciences.

We have maintained the basic structure of the Table of Contents, and retained im-
provements from the twelfth edition. In keeping with this process, we have added more
improvements throughout, which we detail here:
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Continuing Features

® Functions In discussing the use of software for graphing purposes, we added a brief
subsection on least squares curve fitting, which allows students to take advantage of
this widely used and available application. Prerequisite material continues to be re-
viewed in Appendices 1-3.

o Continuity We clarified the continuity definitions by confining the term “endpoints” to
intervals instead of more general domains, and we moved the subsection on continuous
extension of a function to the end of the continuity section.

® Derivatives We included a brief geometric insight justifying I"Hopital’s Rule. We also
enhanced and clarified the meaning of differentiability for functions of several vari-
ables, and added a result on the Chain Rule for functions defined along a path.

o Integrals We wrote a new section reviewing basic integration formulas and the Sub-
stitution Rule, using them in combination with algebraic and trigonometric identities,
before presenting other techniques of integration.

® Probability We created a new section applying improper integrals to some commonly
used probability distributions, including the exponential and normal distributions.
Many examples and exercises apply to the life sciences.

® Series We now present the idea of absolute convergence before giving the Ratio and
Root Tests, and then state these tests in their stronger form. Conditional convergence is
introduced later on with the Alternating Series Test.

® Multivariable and Vector Calculus We give more geometric insight into the idea of
multiple integrals, and we enhance the meaning of the Jacobian in using substitutions
to evaluate them. The idea of surface integrals of vector fields now parallels the notion
for line integrals of vector fields. We have improved our discussion of the divergence
and curl of a vector field.

o Exercises and Examples Strong exercise sets are traditional with Thomas’ Calculus,
and we continue to strengthen them with each new edition. Here, we have updated,
changed, and added many new exercises and examples, with particular attention to in-
cluding more applications to the life science areas and to contemporary problems. For
instance, we added new exercises addressing drug concentrations and dosages, esti-
mating the spill rate of a ruptured oil pipeline, and predicting rising costs for college
tuition.

® The Use of SI Units We have used SI units throughout this edition, except where a
non-SI unit is commonly used in scientific, technical, and commercial literature in most
regions.

RIGOR The level of rigor is consistent with that of earlier editions. We continue to distin-
guish between formal and informal discussions and to point out their differences. We think
starting with a more intuitive, less formal, approach helps students understand a new or dif-
ficult concept so they can then appreciate its full mathematical precision and outcomes. We
pay attention to defining ideas carefully and to proving theorems appropriate for calculus
students, while mentioning deeper or subtler issues they would study in a more advanced
course. Our organization and distinctions between informal and formal discussions give the
instructor a degree of flexibility in the amount and depth of coverage of the various top-
ics. For example, while we do not prove the Intermediate Value Theorem or the Extreme
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Value Theorem for continuous functions on @ = x = b, we do state these theorems precisely,
illustrate their meanings in numerous examples, and use them to prove other important re-
sults. Furthermore, for those instructors who desire greater depth of coverage, in Appendix 6
we discuss the reliance of the validity of these theorems on the completeness of the real
numbers.

WRITING EXERCISES Writing exercises placed throughout the text ask students to ex-
plore and explain a variety of calculus concepts and applications. In addition, the end of
each chapter contains a list of questions for students to review and summarize what they
have learned. Many of these exercises make good writing assignments.

END-OF-CHAPTER REVIEWS AND PROJECTS In addition to problems appearing after
each section, each chapter culminates with review questions, practice exercises covering
the entire chapter, and a series of Additional and Advanced Exercises serving to include
more challenging or synthesizing problems. Most chapters also include descriptions of
several Technology Application Projects that can be worked by individual students or
groups of students over a longer period of time. These projects require the use of a com-
puter running Mathematica or Maple and additional material that is available over the
Internet at www.pearsonglobaleditions/thomas and in MyMathLab.

WRITING AND APPLICATIONS  As always, this text continues to be easy to read, conversa-
tional, and mathematically rich. Each new topic is motivated by clear, easy-to-understand
examples and is then reinforced by its application to real-world problems of immediate
interest to students. A hallmark of this book has been the application of calculus to science
and engineering. These applied problems have been updated, improved, and extended con-
tinually over the last several editions.

TECHNOLOGY 1In a course using the text, technology can be incorporated according to
the taste of the instructor. Each section contains exercises requiring the use of technology;
these are marked with a | T | if suitable for calculator or computer use, or they are labeled
Computer Explorations if a computer algebra system (CAS, such as Maple or Math-
ematica) is required.

INSTRUCTOR'’S SOLUTIONS MANUAL

Single Variable Calculus (Chapters 1-11), ISBN 1-292-16345-3 | 978-1-292-16345-1
Multivariable Calculus (Chapters 10-16), ISBN 1-292-08988-1 | 978-1-292-08988-1
The Instructor’s Solutions Manual contains complete worked-out solutions to all of the
exercises in Thomas’ Calculus: Early Transcendentals.

JUST-IN-TIME ALGEBRA AND TRIGONOMETRY FOR

EARLY TRANSCENDENTALS CALCULUS, Fourth Edition

ISBN 0-321-67103-1 1 978-0-321-67103-5

Sharp algebra and trigonometry skills are critical to mastering calculus, and Just-in-Time
Algebra and Trigonometry for Early Transcendentals Calculus by Guntram Mueller and
Ronald I. Brent is designed to bolster these skills while students study calculus. As stu-
dents make their way through calculus, this text is with them every step of the way, show-
ing them the necessary algebra or trigonometry topics and pointing out potential problem
spots. The easy-to-use table of contents has algebra and trigonometry topics arranged in
the order in which students will need them as they study calculus.
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Technology Resource Manuals

Maple Manual by Marie Vanisko, Carroll College

Mathematica Manual by Marie Vanisko, Carroll College

TI-Graphing Calculator Manual by Elaine McDonald-Newman, Sonoma State University
These manuals cover Maple 17, Mathematica 8, and the TI-83 Plus/TI-84 Plus and TI-89,
respectively. Each manual provides detailed guidance for integrating a specific software
package or graphing calculator throughout the course, including syntax and commands.
These manuals are available to qualified instructors through the Thomas’ Calculus: Early
Transcendentals Web site, www.pearsonglobaleditions/thomas, and MyMathLab.

WEB SITE www.pearsonglobaleditions/thomas

The Thomas’ Calculus: Early Transcendentals Web site contains the chapter on Second-
Order Differential Equations, including odd-numbered answers, and provides the ex-
panded historical biographies and essays referenced in the text. The Technology Resource
Manuals and the Technology Application Projects, which can be used as projects by in-
dividual students or groups of students, are also available.

MyMathLab® Online Course (access code required)

MyMathLab from Pearson is the world’s leading online resource in mathematics, integrat-

ing interactive homework, assessment, and media in a flexible, easy-to-use format.
MyMathLab delivers proven results in helping individual students succeed.

e MyMathLab has a consistently positive impact on the quality of learning in higher
education math instruction. MyMathLab can be successfully implemented in any
environment—Ilab-based, hybrid, fully online, traditional—and demonstrates the quan-
tifiable difference that integrated usage makes in regard to student retention, subse-
quent success, and overall achievement.

e MyMathLab’s comprehensive online gradebook automatically tracks your students’ re-
sults on tests, quizzes, homework, and in the study plan. You can use the gradebook to
quickly intervene if your students have trouble, or to provide positive feedback on a job
well done. The data within MyMathLab are easily exported to a variety of spreadsheet
programs, such as Microsoft Excel. You can determine which points of data you want
to export, and then analyze the results to determine success.

MyMathLab provides engaging experiences that personalize, stimulate, and measure
learning for each student.

o “Getting Ready” chapter includes hundreds of exercises that address prerequisite
skills in algebra and trigonometry. Each student can receive remediation for just those
skills he or she needs help with.

e Exercises: The homework and practice exercises in MyMathLab are correlated to the
exercises in the textbook, and they regenerate algorithmically to give students unlim-
ited opportunity for practice and mastery. The software offers immediate, helpful feed-
back when students enter incorrect answers.

¢ Multimedia Learning Aids: Exercises include guided solutions, sample problems,
animations, Java™ applets, and eText access for extra help at point-of-use.

And, MyMathLab comes from an experienced partner with educational expertise and an
eye on the future.

e Knowing that you are using a Pearson product means knowing that you are using qual-
ity content. It means that our eTexts are accurate and our assessment tools work. It also
means we are committed to making MyMathLab as accessible as possible.

® Whether you are just getting started with MyMathLab, or have a question along the
way, we’re here to help you learn about our technologies and how to incorporate them
into your course.
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To learn more about how MyMathLab combines proven learning applications with power-
ful assessment, visit www.mymathlab.com or contact your Pearson representative.

TestGen®

TestGen® (www.pearsoned.com/testgen) enables instructors to build, edit, print, and ad-
minister tests using a computerized bank of questions developed to cover all the objec-
tives of the text. TestGen is algorithmically based, allowing instructors to create multiple
but equivalent versions of the same question or test with the click of a button. Instructors
can also modify test bank questions or add new questions. The software and test bank are
available for download from Pearson Education’s online catalog.

PowerPoint® Lecture Slides

These classroom presentation slides are geared specifically to the sequence and philos-
ophy of the Thomas’ Calculus series. Key graphics from the book are included to help
bring the concepts alive in the classroom.These files are available to qualified instruc-
tors through the Pearson Instructor Resource Center, www.pearsonglobaleditions.com/
thomas, and MyMathLab.
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Functions

OVERVIEW Functions are fundamental to the study of calculus. In this chapter we review
what functions are and how they are pictured as graphs, how they are combined and trans-
formed, and ways they can be classified. We review the trigonometric functions, and we
discuss misrepresentations that can occur when using calculators and computers to obtain
a function’s graph. We also discuss inverse, exponential, and logarithmic functions. The
real number system, Cartesian coordinates, straight lines, circles, parabolas, and ellipses
are reviewed in the Appendices.

1 . 1 Functions and Their Graphs

Functions are a tool for describing the real world in mathematical terms. A function can be
represented by an equation, a graph, a numerical table, or a verbal description; we will use
all four representations throughout this book. This section reviews these function ideas.

Functions; Domain and Range

The temperature at which water boils depends on the elevation above sea level (the boiling
point drops as you ascend). The interest paid on a cash investment depends on the length of
time the investment is held. The area of a circle depends on the radius of the circle. The dis-
tance an object travels at constant speed along a straight-line path depends on the elapsed time.

In each case, the value of one variable quantity, say y, depends on the value of another
variable quantity, which we might call x. We say that “y is a function of x”” and write this
symbolically as

y = f(x) (“y equals f of x).

In this notation, the symbol f represents the function, the letter x is the independent variable
representing the input value of f, and y is the dependent variable or output value of f at x.

DEFINITION A function f from a set D to a set Y is a rule that assigns a unique
(single) element f(x) € Y to each element x € D.

The set D of all possible input values is called the domain of the function. The set of
all output values of f(x) as x varies throughout D is called the range of the function. The
range may not include every element in the set Y. The domain and range of a function can
be any sets of objects, but often in calculus they are sets of real numbers interpreted as
points of a coordinate line. (In Chapters 13—16, we will encounter functions for which the
elements of the sets are points in the coordinate plane or in space.)

15
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X > f e f(X)
Input Output

(domain) (range)

FIGURE 1.1 A diagram showing a
function as a kind of machine.

% %o
of(@) “ef(x)

a

D = domain set Y = set containing
the range
FIGURE 1.2 A function from a set D
to a set Y assigns a unique element of ¥
to each element in D.

Often a function is given by a formula that describes how to calculate the output value
from the input variable. For instance, the equation A = 1% is a rule that calculates the
area A of a circle from its radius r (so r, interpreted as a length, can only be positive in this
formula). When we define a function y = f(x) with a formula and the domain is not stated
explicitly or restricted by context, the domain is assumed to be the largest set of real
x-values for which the formula gives real y-values, which is called the natural domain. If
we want to restrict the domain in some way, we must say so. The domain of y = x? is the
entire set of real numbers. To restrict the domain of the function to, say, positive values of
x, we would write “y = x% x > 0.”

Changing the domain to which we apply a formula usually changes the range as well.
The range of y = x? is [0,0). The range of y = x?, x = 2, is the set of all numbers
obtained by squaring numbers greater than or equal to 2. In set notation (see Appendix 1),
the range is {x*|x = 2} or {y|y = 4} or [4,00).

When the range of a function is a set of real numbers, the function is said to be real-
valued. The domains and ranges of most real-valued functions of a real variable we con-
sider are intervals or combinations of intervals. The intervals may be open, closed, or half
open, and may be finite or infinite. Sometimes the range of a function is not easy to find.

A function f is like a machine that produces an output value f(x) in its range whenever we
feed it an input value x from its domain (Figure 1.1). The function keys on a calculator give an
example of a function as a machine. For instance, the Vi key on a calculator gives an output
value (the square root) whenever you enter a nonnegative number x and press the Vix key.

A function can also be pictured as an arrow diagram (Figure 1.2). Each arrow associates
an element of the domain D with a unique or single element in the set Y. In Figure 1.2, the
arrows indicate that f(a) is associated with a, f(x) is associated with x, and so on. Notice that
a function can have the same value at two different input elements in the domain (as occurs
with f(a) in Figure 1.2), but each input element x is assigned a single output value f(x).

EXAMPLE 1 Let’s verify the natural domains and associated ranges of some simple
functions. The domains in each case are the values of x for which the formula makes sense.

Function Domain (x) Range (y)
y = (=00, 00) [0, 00)
y=1/x (=00, 0) U (0, 00) (=00,0) U (0,00)
y=Vax [0,00) [0,00)

y=V4 —x (=00, 4] [0, 00)
y=VI1 —x? [—1,1] [0,1]

Solution The formula y = x? gives a real y-value for any real number x, so the domain
is (—00, 00). The range of y = x? is [0, 00) because the square of any real number is non-
negative and every nonnegative number y is the square of its own square root, y = ( \/y)2
fory = 0.

The formula y = 1/x gives a real y-value for every x except x = 0. For consistency
in the rules of arithmetic, we cannot divide any number by zero. The range of y = 1/x, the
set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since
y = 1/(1/y). Thatis, for y # 0 the number x = 1/y is the input assigned to the output
value y.

The formula y = Vix gives a real y-value only if x = 0. The range of y = Vix is
[0, 00) because every nonnegative number is some number’s square root (namely, it is the
square root of its own square).

In y = V4 — x, the quantity 4 — x cannot be negative. That is, 4 — x = 0, or
x = 4. The formula gives real y-values for all x = 4. The range of V4 — x is [0, 00),
the set of all nonnegative numbers.
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FIGURE 1.5 Graph of the function

in Example 2.
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The formula y = V1 — x? gives a real y-value for every x in the closed interval from
—1 to 1. Outside this domain, 1 — x? is negative and its square root is not a real number.
The values of 1 — x? vary from O to 1 on the given domain, and the square roots of these
values do the same. The range of V1 — x*is [0, 1]. [ |

Graphs of Functions

If f is a function with domain D, its graph consists of the points in the Cartesian plane
whose coordinates are the input-output pairs for f. In set notation, the graph is

{(x, fx) |xeD}.

The graph of the function f(x) = x + 2 is the set of points with coordinates (x, y) for
which y = x + 2. Its graph is the straight line sketched in Figure 1.3.

The graph of a function f is a useful picture of its behavior. If (x, y) is a point on the
graph, then y = f(x) is the height of the graph above (or below) the point x. The height
may be positive or negative, depending on the sign of f(x) (Figure 1.4).

y=x+2

/—20 *

FIGURE 1.3 The graph of f(x) = x + 2 FIGURE 1.4 TIf (x, y) lies on the graph of

is the set of points (x, y) for which y has the f, then the value y = f(x) is the height of

value x + 2. the graph above the point x (or below x if
f(x) is negative).

EXAMPLE 2 Graph the function y = x? over the interval [—2,2].

Solution Make a table of xy-pairs that satisfy the equation y = x2. Plot the points (x, y)
whose coordinates appear in the table, and draw a smooth curve (labeled with its equation)
through the plotted points (see Figure 1.5). |

How do we know that the graph of y = x? doesn’t look like one of these curves?

y = x2? y=x2?
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To find out, we could plot more points. But how would we then connect them? The basic
question still remains: How do we know for sure what the graph looks like between the
points we plot? Calculus answers this question, as we will see in Chapter 4. Meanwhile,
we will have to settle for plotting points and connecting them as best we can.

Representing a Function Numerically

We have seen how a function may be represented algebraically by a formula (the area
function) and visually by a graph (Example 2). Another way to represent a function is
numerically, through a table of values. Numerical representations are often used by engi-
neers and experimental scientists. From an appropriate table of values, a graph of the func-
tion can be obtained using the method illustrated in Example 2, possibly with the aid of a
computer. The graph consisting of only the points in the table is called a scatterplot.

EXAMPLE 3 Musical notes are pressure waves in the air. The data associated with
Figure 1.6 give recorded pressure displacement versus time in seconds of a musical note
produced by a tuning fork. The table provides a representation of the pressure function
over time. If we first make a scatterplot and then connect approximately the data points
(t, p) from the table, we obtain the graph shown in the figure.

p (pressure)

Time Pressure Time Pressure o
0.00091 ~0.080 0.00362 0.217 08 * Paw
0.00108 0.200 0.00379 0.480 o4l
0.00125 0.480 0.00398 0.681 021 RS / ., ©
0.00144 0.693 0.00416 0.810 —0a- 0%01 0002 §00F 0004 0~OW06
0.00162 0.816 0.00435 0.827 el
0.00180 0.844 0.00453 0.749
0.00198 0.771 0.00471 0.581 FIGURE 1.6 A smooth curve through the plotted points
0.00216 0.603 0.00489 0.346 gives a graph of the pressure function represented by the
0.00234 0.368 0.00507 0.077 accompanying tabled data (Example 3).
0.00253 0.099 0.00525 —0.164
0.00271 —0.141 0.00543 —0.320
0.00289 —0.309 0.00562 —0.354
0.00307 —0.348 0.00579 —0.248
0.00325 —0.248 0.00598 —0.035
0.00344 —0.041

The Vertical Line Test for a Function

Not every curve in the coordinate plane can be the graph of a function. A function f can
have only one value f(x) for each x in its domain, so no vertical line can intersect the
graph of a function more than once. If a is in the domain of the function f, then the vertical
line x = a will intersect the graph of f at the single point (a, f(a)).

A circle cannot be the graph of a function, since some vertical lines intersect the circle
twice. The circle graphed in Figure 1.7a, however, does contain the graphs of functions of
x, such as the upper semicircle defined by the function f(x) = V1 — x? and the lower
semicircle defined by the function g(x) = —V1 — x? (Figures 1.7b and 1.7c¢).
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FIGURE 1.8 The absolute value

function has domain (—00, 00) and

range [0, 00).

y
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FIGURE 1.9 To graph the

function y = f(x) shown here,

we apply different formulas to

different parts of its domain

(Example 4).
y
4 p—
SY=x
3 ,—0
,/
2+ 0
1k |'/ - y=|x]
//
L N R X
-2 *1,/ 1 2 3
S—
,/
*—0 —21

FIGURE 1.10 The graph of the
greatest integer function y = | x|

lies on or below the line y = x, so

it provides an
(Example 5).

integer floor for x
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(@ x?+y*=1 () y=V1-x2 © y=-\V1-4x?

FIGURE 1.7 (a) The circle is not the graph of a function; it fails the vertical line test. (b) The
upper semicircle is the graph of a function f(x) = V1 — x% (c) The lower semicircle is the graph

of a function g(x) = —V'1 — x%

Piecewise-Defined Functions

Sometimes a function is described in pieces by using different formulas on different parts
of its domain. One example is the absolute value function

X,
= {
N

whose graph is given in Figure 1.8. The right-hand side of the equation means that the
function equals x if x = 0, and equals —x if x < 0. Piecewise-defined functions often
arise when real-world data are modeled. Here are some other examples.

x=0
x <0,

First formula

Second formula

EXAMPLE 4 The function
—X, x <0 First formula
fx) = xz, 0=x=1 Second formula
1, x> 1 Third formula

is defined on the entire real line but has values given by different formulas, depending on
the position of x. The values of f are given by y = —x when x < 0, y = x> when
0=x=1, and y = 1 when x > 1. The function, however, is just one function whose
domain is the entire set of real numbers (Figure 1.9). |

EXAMPLE 5 The function whose value at any number x is the greatest integer less
than or equal to x is called the greatest integer function or the integer floor function. It
is denoted | x |. Figure 1.10 shows the graph. Observe that

|—-1.2] = -2,
[-2] = -2. m

EXAMPLE 6 The function whose value at any number x is the smallest integer
greater than or equal to x is called the least integer function or the integer ceiling func-
tion. It is denoted [ x |. Figure 1.11 shows the graph. For positive values of x, this function
might represent, for example, the cost of parking x hours in a parking lot that charges $1
for each hour or part of an hour. |
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y Increasing and Decreasing Functions
4
3L 5 ,/'y =x If the graph of a function climbs or rises as you move from left to right, we say that the
/' function is increasing. If the graph descends or falls as you move from left to right, the
2r © //’ —x] function is decreasing.
1 >—/ﬁ/ 4
7
_'2 _T P i é é . DEFINITIONS Let f be a function defined on an interval I and let x; and x, be
o—,cil - any two points in /.
7/
O—,'/ —2r 1. If f(x,) > f(x;) whenever x; < x,, then f is said to be increasing on I.
7/
2. If f(x,) < f(x;) whenever x; < x,, then f is said to be decreasing on /.
FIGURE 1.11 The graph ? : b

of the least integer function

y = [x] lies on or above the line It is important to realize that the definitions of increasing and decreasing functions
y = x, so it provides an integer must be satisfied for every pair of points x; and x, in [ with x; < x,. Because we use the
ceiling for x (Example 6). inequality < to compare the function values, instead of =, it is sometimes said that f is

strictly increasing or decreasing on /. The interval / may be finite (also called bounded) or
infinite (unbounded) and by definition never consists of a single point (Appendix 1).

EXAMPLE 7 The function graphed in Figure 1.9 is decreasing on (—o0, 0 | and increas-
ing on [0, 1]. The function is neither increasing nor decreasing on the interval [ 1, 00)
because of the strict inequalities used to compare the function values in the definitions. M

Even Functions and Odd Functions: Symmetry

The graphs of even and odd functions have characteristic symmetry properties.

DEFINITIONS A function y = f(x) is an

even function of x if f(—x) = f(x),
odd function of x if f(—x) = —f(x),

for every x in the function’s domain.

y=x The names even and odd come from powers of x. If y is an even power of x, as in
(—xy) . y) y = x?or y = x* itis an even function of x because (—x)?> = x? and (—x)* = x* If yisan
odd power of x,asiny = xory = X3, it is an odd function of x because (—x)'! = —x and
0 * (0 = =2

(a) The graph of an even function is symmetric about the y-axis. Since f(—x) = f(x), a
point (x, y) lies on the graph if and only if the point (—x, y) lies on the graph (Figure 1.12a).

y A reflection across the y-axis leaves the graph unchanged.
y =3 The graph of an odd function is symmetric about the origin. Since f(—x) = —f(x), a
@) point (x, y) lies on the graph if and only if the point (—x, —y) lies on the graph (Figure 1.12b).
Equivalently, a graph is symmetric about the origin if a rotation of 180° about the origin leaves the
0 graph unchanged. Notice that the definitions imply that both x and —x must be in the domain of f.

=* =9 EXAMPLE 8 Here are several functions illustrating the definition.

) fx) = x? Even function: (—x)?> = x? for all x; symmetry about y-axis.

FIGURE 1.12 (a) The graph of y = x° fx) =x>+1 Even function: (—x)*> + 1 = x> 4+ 1 for all x; symmetry about

(an even function) is symmetric about the y-axis (Figure 1.13a).

y-axis. (b) The graph of y = x* (an odd

function) is symmetric about the origin, fx) =x Odd function: (—x) = —x for all x; symmetry about the origin.
f&x) =x+1 Not odd: f(—x) = —x + 1, but —f(x) = —x — 1. The two are not
equal.

Noteven: (—x) + 1 # x + 1 forall x #* 0 (Figure 1.13b). |
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y=x+1

(a) (b)

FIGURE 1.13 (a) When we add the constant term 1 to the function

y = x2, the resulting function y = x> + 1 is still even and its graph is
still symmetric about the y-axis. (b) When we add the constant term 1 to
the function y = x, the resulting function y = x + 1 is no longer odd,
since the symmetry about the origin is lost. The function y = x + 1 is
also not even (Example 8).

Common Functions

A variety of important types of functions are frequently encountered in calculus. We iden-
tify and briefly describe them here.

Linear Functions A function of the form f(x) = mx + b, for constants m and b, is called
a linear function. Figure 1.14a shows an array of lines f(x) = mx where b = 0, so these
lines pass through the origin. The function f(x) = x where m = 1 and b = 0 is called the
identity function. Constant functions result when the slope m = 0 (Figure 1.14b).
A linear function with positive slope whose graph passes through the origin is called a
proportionality relationship.

y
=3
2 y=3
1_
Lo [ R
0 1 2
(b)

FIGURE 1.14 (a) Lines through the origin with slope m. (b) A constant func-
tion with slope m = 0.

DEFINITION Two variables y and x are proportional (to one another) if one
is always a constant multiple of the other; that is, if y = kx for some nonzero
constant k.

If the variable y is proportional to the reciprocal 1/x, then sometimes it is said that y is
inversely proportional to x (because 1/x is the multiplicative inverse of x).

Power Functions A function f(x) = x“ where a is a constant, is called a power function.
There are several important cases to consider.
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(@) a =

The graphs of f(x) = x", forn = 1, 2, 3, 4, 5, are displayed in Figure 1.15. These func-
tions are defined for all real values of x. Notice that as the power n gets larger, the curves
tend to flatten toward the x-axis on the interval (—1, 1), and to rise more steeply for
|x| > 1. Each curve passes through the point (1, 1) and through the origin. The graphs of
functions with even powers are symmetric about the y-axis; those with odd powers are
symmetric about the origin. The even-powered functions are decreasing on the interval
(=00,0] and increasing on [0, ©0); the odd-powered functions are increasing over the

entire real line (—00, 00).
Y y= 3 _
YRRU
; X — | | |

|
1 o] 1 -1/ 0 1
—1 —1+ —1+ —1t

n, a positive integer.

—_
T
—_

FIGURE 1.15 Graphs of f(x) = x",n = 1, 2, 3,4, 5, defined for —00 < x < 00,

(b)) a=—-1 or a=-2.

The graphs of the functions f(x) = x ' = 1/x and g(x) = x> = 1/x* are shown in
Figure 1.16. Both functions are defined for all x # 0 (you can never divide by zero). The
graph of y = 1 /x is the hyperbola xy = 1, which approaches the coordinate axes far from
the origin. The graph of y = 1/x? also approaches the coordinate axes. The graph of the
function f is symmetric about the origin; f is decreasing on the intervals (—0o, 0) and
(0, 00). The graph of the function g is symmetric about the y-axis; g is increasing on
(=09, 0) and decreasing on (0, ©0).

Domain: x # 0
Range: y# 0

Domain: x # 0
Range: y>0

(a) (b)

FIGURE 1.16 Graphs of the power functions f(x) = x“ for part (a) a = —1
and for part (b) a = —2.

TS

13
,3,2,and

DO =

() a=

The functions f(x) = x'/2 = Vx and g(x) = x!/3 = Vx are the square root and cube
root functions, respectively. The domain of the square root function is [0, 00), but the
cube root function is defined for all real x. Their graphs are displayed in Figure 1.17, along
with the graphs of y = x¥? and y = x?/%. (Recall that x*> = (x!/2)* and x?/* = (x'/?)%)

Polynomials A function p is a polynomial if
px) =ax" + a_ x4+ - +ax + a

where n is a nonnegative integer and the numbers a, a;, a, . . ., a, are real constants
(called the coefficients of the polynomial). All polynomials have domain (—00, 00). If the
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y
v y
y= Vi v =22
1+ y=Va
1+ 1k
1
ol 1 * o 1 * ol 1 * ol 1 *
Domain: 0 =x < ® Domain: —o% <x < Domain: 0 =x < Domain: —© < x < ®©
Range: O0=y<= Range: —o<y<® Range: 0=y<o Range: O0=y<w»
. 113 2
FIGURE 1.17 Graphs of the power functions f(x) = x* for a = 3375 and 3

leading coefficient @, ¥ 0 and n > 0, then 7 is called the degree of the polynomial. Lin-
ear functions with m # 0 are polynomials of degree 1. Polynomials of degree 2, usually
written as p(x) = ax®> + bx + c, are called quadratic functions. Likewise, cubic functions
are polynomials p(x) = ax® + bx* + cx + d of degree 3. Figure 1.18 shows the graphs
of three polynomials. Techniques to graph polynomials are studied in Chapter 4.

3 2
XXt 1
yf3 5 2x+3
y
4r y
i Xy =8t - 14— 0k 4 1lx— | y=o =2+ D= 1)
161
|
/TN N
—1 1 2
L5 x -7+
4 B | o |
4 “1IN 0 1 2 .
76_
78_
10} |
-4 “12}+

(a) (b) (©
FIGURE 1.18 Graphs of three polynomial functions.
Rational Functions A rational function is a quotient or ratio f(x) = p(x)/g(x), where

p and g are polynomials. The domain of a rational function is the set of all real x for which
g(x) # 0. The graphs of several rational functions are shown in Figure 1.19.

y
A y y= 5x%+8x—3
i 32 +2
2 -[\
_2x2-3h L . 5
YT T4 2 \ 1_/ L1ney=§
1 1 /I/Ix I ' P BT BN X
%// 2 4 =5 0 3 10
—] 1 B
L —2 —4
NOT TO SCALE
L -6
-8
() (b) (©

FIGURE 1.19 Graphs of three rational functions. The straight red lines approached by the graphs are called
asymptotes and are not part of the graphs. We discuss asymptotes in Section 2.6.
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Algebraic Functions Any function constructed from polynomials using algebraic oper-
ations (addition, subtraction, multiplication, division, and taking roots) lies within the
class of algebraic functions. All rational functions are algebraic, but also included are
more complicated functions (such as those satisfying an equation like y* — 9xy + x* = 0,

studied in Section 3.7). Figure 1.20 displays the graphs of three algebraic functions.

- 1/3 —4
y y=x ()C ) y y=x(1_x)2/5

|

|
—_
(=)
—_
[«

Q-

—_

(a) (b) (©

FIGURE 1.20 Graphs of three algebraic functions.

Trigonometric Functions The six basic trigonometric functions are reviewed in Section 1.3.
The graphs of the sine and cosine functions are shown in Figure 1.21.

A A AR e
Vv VA F VARV

(a) f(x) = sinx (b) f(x) = cos x

FIGURE 1.21 Graphs of the sine and cosine functions.

Exponential Functions Functions of the form f(x) = a*, where the base a > 0 is a
positive constant and a # 1, are called exponential functions. All exponential functions
have domain (—00, ) and range (0, ), so an exponential function never assumes the
value 0. We discuss exponential functions in Section 1.5. The graphs of some exponential
functions are shown in Figure 1.22.

y y
y =10 y=107*
12+ 12+
10+ 10+
8
6
4
2
—_— | .

FIGURE 1.22 Graphs of exponential functions.
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Logarithmic Functions These are the functions f(x) = log,x, where the base a # 1
is a positive constant. They are the inverse functions of the exponential functions, and
we discuss these functions in Section 1.6. Figure 1.23 shows the graphs of four loga-
rithmic functions with various bases. In each case the domain is (0, ©0) and the range
is (—00, 00),

X

(=]
—

[
v = logsx

y = log;px

FIGURE 1.23 Graphs of four logarithmic =~ FIGURE 1.24  Graph of a catenary or
functions. hanging cable. (The Latin word catena
means “chain.”)

Transcendental Functions These are functions that are not algebraic. They include the
trigonometric, inverse trigonometric, exponential, and logarithmic functions, and many
other functions as well. A particular example of a transcendental function is a catenary.
Its graph has the shape of a cable, like a telephone line or electric cable, strung from one
support to another and hanging freely under its own weight (Figure 1.24). The function
defining the graph is discussed in Section 7.3.

Exercisesm

Functions 8. a v b. ¥
In Exercises 1-6, find the domain and range of each function.

L fo=1+x 2. f)=1-Vax

3. F(x) = V5x + 10 4. gx) = Vx> — 3x

_ 4 _ 2

5. f(t) = 3=, 6. G(1) = 2 16
In Exercises 7 and 8, which of the graphs are graphs of functions of x, x X
and which are not? Give reasons for your answers. 0 0

7. a. Y b. ¥

Finding Formulas for Functions
9. Express the area and perimeter of an equilateral triangle as a
function of the triangle’s side length x.

10. Express the side length of a square as a function of the length d of
the square’s diagonal. Then express the area as a function of the
diagonal length.

x x 11. Express the edge length of a cube as a function of the cube’s
diagonal length d. Then express the surface area and volume of
the cube as a function of the diagonal length.
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12. A point P in the first quadrant lies on the graph of the function
fx) = V. Express the coordinates of P as functions of the
slope of the line joining P to the origin.

13. Consider the point (x,y) lying on the graph of the line
2x + 4y = 5. Let L be the distance from the point (x, y) to the
origin (0, 0). Write L as a function of x.

14. Consider the point (x, y) lying on the graph of y = Vx — 3. Let
L be the distance between the points (x, y) and (4, 0). Write L as a
function of y.

Functions and Graphs
Find the natural domain and graph the functions in Exercises 15-20.

15. f(x) =5 — 2x 16. f(x) = 1 — 2x — x?

17. g(x) = Vx| 18. g(x) = V—x
19. F(t) = t/|1| 20. G@ = 1/]1]
. . x+3
21. Find the domainof y = ——————.
4 —Vx2=9
2
. X
22. Find th fy=2+ .
ind the range of y 214

23. Graph the following equations and explain why they are not
graphs of functions of x.

b. y* = x?

24. Graph the following equations and explain why they are not
graphs of functions of x.

a. [y =x
a x| + |y =1 b. |x+y =1

Piecewise-Defined Functions
Graph the functions in Exercises 25-28.

S P
- {0 1205,
P (R
28. G(x)={i’/x’ 322

Find a formula for each function graphed in Exercises 29-32.

29. a. y b.
! 1, 1
ol > "

30. a. y b.

2, D

31. a. y b. y

(=1, 1)1 a,n 2

T 3 ! ' X
Oo—e
(2,1)41, -G, -1

32. a. y b.

—~
=
—
=
<

r

N—_—_——————

0 T
2

The Greatest and Least Integer Functions
33. For what values of x is

a. |x] =0? b. [x] =0?
34. What real numbers x satisfy the equation | x| = [x]?
35. Does [—x] = —|x] for all real x? Give reasons for your answer.
36. Graph the function

| x|, x=0
f& = {m, x <.

Why is f(x) called the integer part of x?

Increasing and Decreasing Functions

Graph the functions in Exercises 37-46. What symmetries, if any, do
the graphs have? Specify the intervals over which the function is
increasing and the intervals where it is decreasing.

37. y=—x3 38. y=—i2
X
1 1
39.y=—§ 40.y=m
41. y = Vx| 42. y = V—x
43. y = x*/8 4. y=—4Vx
45. y = —x32 46. y = (—x)z/3

Even and Odd Functions
In Exercises 47-58, say whether the function is even, odd, or neither.
Give reasons for your answer.

47. f(x) =3 48. f(x) = x5

49, f(x) = x>+ 1 50. f(x) = x> + x

51. g(x) = x> + x 52. gx) =x* + 32— 1
X

53. glx) = e 54, g(x) = e

S5. h(t) = — 1 ; 56. (1) = |7

57. h(t) = 2t + 1 58. () =2t +1

Theory and Examples
59. The variable s is proportional to #, and s = 25 when # = 75.
Determine # when s = 60.



60.

61.

62.

63.

64.

Kinetic energy The kinetic energy K of a mass is proportional
to the square of its velocity v. If K = 12,960 joules when
v = 18 m/s, what is K when v = 10 m/s?

The variables r and s are inversely proportional, and » = 6 when
s = 4. Determine s when r = 10.

Boyle’s Law Boyle’s Law says that the volume V of a gas at
constant temperature increases whenever the pressure P decreases,
so that V and P are inversely proportional. If P = 14.7 N/cm?
when V = 1000 cm?, then what is V when P = 23.4 N/cm??

A box with an open top is to be constructed from a rectangular
piece of cardboard with dimensions 14 cm by 22 cm by cutting
out equal squares of side x at each corner and then folding up the
sides as in the figure. Express the volume V of the box as a func-
tion of x.

1 22 >]

L
|

The accompanying figure shows a rectangle inscribed in an isos-
celes right triangle whose hypotenuse is 2 units long.

a. Express the y-coordinate of P in terms of x. (You might start
by writing an equation for the line AB.)

b. Express the area of the rectangle in terms of x.

Y

P(x, ?7)

In Exercises 65 and 66, match each equation with its graph. Do not
use a graphing device, and give reasons for your answer.

65.

a. y=x* b. y = x’ c. y=xl0

N

66.

67.

68.

69.

70.

71.

72.
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a. y = 5x b. y =5* c.y=x

y

a. Graph the functions f(x) = x/2 and g(x) = 1 + (4/x) to-
gether to identify the values of x for which
X 4
5 > 1+ X
b. Confirm your findings in part (a) algebraically.
a. Graph the functions f(x) = 3/(x — 1) and g(x) = 2/(x + 1)
together to identify the values of x for which
3 2
x—1 < x+ 1
b. Confirm your findings in part (a) algebraically.

For a curve to be symmetric about the x-axis, the point (x, y) must
lie on the curve if and only if the point (x, —y) lies on the curve.
Explain why a curve that is symmetric about the x-axis is not the
graph of a function, unless the function is y = 0.

Three hundred books sell for $40 each, resulting in a revenue of
(300)($40) = $12,000. For each $5 increase in the price, 25
fewer books are sold. Write the revenue R as a function of the
number x of $5 increases.

A pen in the shape of an isosceles right triangle with legs of
length x m and hypotenuse of length 4 m is to be built. If fencing
costs $5/m for the legs and $10/m for the hypotenuse, write the
total cost C of construction as a function of 4.

Industrial costs A power plant sits next to a river where the
river is 250 m wide. To lay a new cable from the plant to a loca-
tion in the city 2 km downstream on the opposite side costs $180
per meter across the river and $100 per meter along the land.

| 2 km |
s Ciy

I
250 m:

I

I

|

Power plant
NOT TO SCALE

a. Suppose that the cable goes from the plant to a point Q on the
opposite side that is x m from the point P directly opposite
the plant. Write a function C(x) that gives the cost of laying
the cable in terms of the distance x.

b. Generate a table of values to determine if the least expensive
location for point Q is less than 300 m or greater than 300 m
from point P.
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1 2 Combining Functions; Shifting and Scaling Graphs

In this section we look at the main ways functions are combined or transformed to form
new functions.

Sums, Differences, Products, and Quotients

Like numbers, functions can be added, subtracted, multiplied, and divided (except where
the denominator is zero) to produce new functions. If f and g are functions, then for every
x that belongs to the domains of both f and g (that is, for x € D(f) N D(g)), we define
functions f + g, f — g, and fg by the formulas

(f + 9 = f) + gx)
(f — W) = fx) — glx)
(fo)x) = f()g(x).
Notice that the + sign on the left-hand side of the first equation represents the operation of
addition of functions, whereas the + on the right-hand side of the equation means addition
of the real numbers f(x) and g(x).

At any point of D(f) N D(g) at which g(x) # 0, we can also define the function f/g
by the formula

<f)( ) = J;Ex; (where g(x) # 0).

Functions can also be multiplied by constants: If ¢ is a real number, then the function
cf is defined for all x in the domain of f by

(cHx) = cf).

EXAMPLE 1 The functions defined by the formulas
f)=Vx and g = V1 —x

have domains D(f) = [0,00) and D(g) = (—0, 1 ]. The points common to these
domains are the points

[0,00) N (=00, 1] = [0, 1].

The following table summarizes the formulas and domains for the various algebraic com-
binations of the two functions. We also write f + g for the product function fg.

Function Formula Domain
f+g f + 90 = Va+ V1 —x [0,1] = D(f) N D(g)
f-g f — 9 = Vx = V1 —x [0,1]
g—f ¢ — N =V1I-x-Vx [0,1]
f-g (fro® = frgx) = Vx(1 — x) [0, 1]
/g f;(x) ;8 T [0, 1)(x = 1 excluded)
g/f f( X) = igi ! ; A (0, 1] (x = 0 excluded)

The graph of the function f + g is obtained from the graphs of f and g by adding the
corresponding y-coordinates f(x) and g(x) at each point x € D(f) M D(g), as in Figure 1.25.
The graphs of f + g and f - g from Example | are shown in Figure 1.26.
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y y
y=f+tg

8F g =V1-x ) =V
fLY=Urow st !
4 1L

f(@) + g(a) : y=f-g
2

L L L L

o a ' I

FIGURE 1.25 Graphical addition of two ~ FIGURE 1.26 The domain of the function f + g

functions.

Composite Functions

is the intersection of the domains of f and g, the
interval [0, 1] on the x-axis where these domains
overlap. This interval is also the domain of the
function f - g (Example 1).

Composition is another method for combining functions.

posed with g”) is defined by

lies in the domain of f.

DEFINITION If f and g are functions, the composite function feo g (“f com-

The domain of f © g consists of the numbers x in the domain of g for which g(x)

(f o 9)x) = f(g(x)).

The definition implies that f ¢ g can be formed when the range of g lies in the domain
of f. To find (f ° g)(x), first find g(x) and second find f(g(x)). Figure 1.27 pictures f ° g as
a machine diagram, and Figure 1.28 shows the composite as an arrow diagram.

X — g 8) [ — flg)

FIGURE 1.27 A composite function f ° g uses
the output g(x) of the first function g as the input
for the second function f.

fog

flg(x))

8(x)

FIGURE 1.28 Arrow diagram for f o g. If x lies in the
domain of g and g(x) lies in the domain of f, then the
functions f and g can be composed to form (f © g)(x).

To evaluate the composite function g ° f (when defined), we find f(x) first and then
g(f(x)). The domain of g ° f is the set of numbers x in the domain of f such that f(x) lies

in the domain of g.

The functions f © g and g © f are usually quite different.
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y
y=x2+2
y=x2+1
y = x?
y:xzfz
N |
- X
-2 0 |\2
—1 " |/ N2 units

FIGURE 1.29 To shift the graph
of f(x) = x? up (or down), we add

positive (or negative) constants
to the formula for f (Examples 3a

and b).

EXAMPLE 2 If f(x) = Vxand g(x) = x + 1, find
(@ (feo)x) (b) (g°Hx) © (foHx) (d) (g°g)X).

Solution
Composite Domain
@ (fog)) = f(g) = Vg) = Vx + 1 [—1,00)
(b) (g°Hx) = g(f(x) = f(x) + 1= Vx + 1 [0, 00)
© (FehHw) = ff@) = V) = VVa=x/ [0, 00)
@ (gog)x) =gg) =g + 1=+ DH+1=x+2 (=00, 00)
To see why the domain of f o g is [—1, 00), notice that g(x) = x + 1 is defined for all real
x but belongs to the domain of f only if x + 1 = 0, that is to say, when x = —1. |

Notice that if f(x) = x* and g(x) = V/x, then (feox) = (\/);)2 = x. However, the
domain of f o g is [ 0, 00), not (—00, 00), since Vx requires x = 0.

Shifting a Graph of a Function

A common way to obtain a new function from an existing one is by adding a constant to
each output of the existing function, or to its input variable. The graph of the new function
is the graph of the original function shifted vertically or horizontally, as follows.

Shift Formulas

Vertical Shifts

y=f(x) +k Shifts the graph of f up kunits if k > 0
Shifts it down |k| units if k < 0

Horizontal Shifts

y=f(x+h) Shifts the graph of f left h units if h > 0
Shifts it right || units if 2 < 0

EXAMPLE 3

(a) Adding 1 to the right-hand side of the formula y = x* to get y = x> + 1 shifts the
graph up 1 unit (Figure 1.29).

(b) Adding —2 to the right-hand side of the formula y = x? to get y = x> — 2 shifts the
graph down 2 units (Figure 1.29).

(¢) Adding3toxiny = x>toget y = (x + 3)? shifts the graph 3 units to the left, while
adding —2 shifts the graph 2 units to the right (Figure 1.30).

(d) Adding —2toxiny = |x|, and then adding —1 to the result, gives y = |x — 2| — 1
and shifts the graph 2 units to the right and 1 unit down (Figure 1.31). |

Scaling and Reflecting a Graph of a Function

To scale the graph of a function y = f(x) is to stretch or compress it, vertically or hori-
zontally. This is accomplished by multiplying the function f, or the independent variable
x, by an appropriate constant c¢. Reflections across the coordinate axes are special cases
where ¢ = —1.





